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BY 
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ABSTRACT 

Our main result in this paper is that a Banach space X embeds into L, if and 
only if l~(X) embeds into Lo; more generally if 1 _-< p < 2, X embeds into Lp if 
and only if lp (X) embeds into L~,. 

I. Introduction 

It is still unknown whether every Banach space which embeds into Lo= 

L0(0,1) is isomorphic to a subspace of L~. This problem was suggested by 

Kwapien [9]. Our main result in this paper is that a Banach space X embeds into 

L~ if and only if /a(X) embeds into Lo; more generally if 1 =< p < 2, X embeds 

into Lp if and only if lp (X) embeds into Lo. 

Before discussing the problem and the contents of the paper, we introduce 

some notation. Throughout  the paper ~ will denote a compact metric space, 

the o-algebra of Borel subsets of ~1 and P a nonatomic probability measure on 

E. Of course there is no loss of generality in taking 12 = [0, 1] and P Lebesgue 

measure on [0, 1]. For 0 _-< p < ~, L, (f~, ~, P)  will be abbreviated to Lp. We also 

denote by L(p,~) the Lorentz space, weak Lp, of all f E Lo(f~,E, P) so that 

"~l/p 
ltfllP.=-- sup x(P(l f l  x)) <~.  

0<x <~ 

Let us say that a linear operator  V : X ~  Lp (or V : X ~  L(p,~)) is a strong 

embedding if V is an isomorphism onto its range, and the topology of Lp (or 

L(p, ~)) on its range coincides with the Lo-topology (convergence in measure). 

For 1 _-< p _<- 2, a Banach space X is said to be of type p (Rademacher) if there 
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is a constant C so that 

where the average is taken over all choices of sign el = -- 1. Every Banach space 

is of type one. 
The first progress on Kwapien's problem was made by Nikishin [14] who 

showed that a Banach subspace of Lo is in fact isomorphic and is a subspace of Lp 
for every p < 1. Later [15] (cf. expositions in [13] and [5]) he refined this result to 
establish the following factorization theorem: 

THEOREM 1.1. (Nikishin). Let X be a Banach space of type p (1 =< p < 2) and 

let V : X ~ Lo be any continuous linear operator. Then given e > O, there exists a 

set E with P ( E )  >= 1 - e so that if 

Wx = le Vx 

then W is a bounded linear operator from X into L (19, oo). 

COROLLARY 1.2. Every Banach subspace of Lo can be strongly embedded in 

L(I,o0.  

COROLLARY 1.3. Every Banaeh subspace of Lo of type p can be strongly 

embedded in L (p, oo). 

We obtain the results announced in the introduction by a close analysis of the 
spaces L(p, oo). Our methods hinge on the existence of non-trivial continuous 
linear functionals on the non-locally convex quasi-Banach space L(1, oo). This 
fact was first observed by Cwikel and Sagher [2] and recently the dual of L(1, oo) 
has been studied by Cwikel and Fefferman [1] and by Kupka and Peck [8]. Our 
methods are quite similar to techniques in [8] but were obtained independently. 

In fact for convenience, in Section 2, we study not L(p, oo) but instead the 
/®-product l®(L(p, oo)) which we abbreviate to ~p. Thus ~p consists of all 

sequences F = (f,) where fn E L (p, oo) and 

][Fl] = sup ]]h I]~,~ < ~- 
n 

We do, however, give an application of these ideas to L(p, oo) showing the 
standard embedding of Lp into L(p, oo) using p-stable processes yields a 

complemented subspace. 
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In Section 3 we give our applications to Banach subspaces of Lo and in Section 

4 we make our closing remarks. 

We thank B. Maurey and G. Pisier for helpful comments. 

2. An  explicit  l inear funct iona l  on  ~L 

Let ~ be any ultrafilter on (2,co) which includes each of the sets (x,~) for 

x > 2. Let oy be any ultrafilter on N containing each of the sets {m E N : m -> n} 

for n E N. 

For f E L0 and x > 0 we define the truncation zxf by 

"c,,f(to ) = f(to ) 

= X  

-~- - -  X 

Now suppose F = (~.)E °~1. We define 

if [f(oa)[ ~ x, 

if f ( t o )  > x, 

if f ( t o ) <  - x. 

1 
th(F) = !im 1 - ~  !ira ~ ~(Txf.), 

where ~' denotes expectation. 

LEMMA 2.1. ¢ is a positive linear functional on ~I, and [loll[ = 1. 

PROOF. First we note that ~b is well-defined and II~b(F)J]- lIFlJ for F E °~l. In 

fact if f E L(1, oo), with IIfll-= 1, 

] ~ ( ~ ' , f ) l < l + l o g x ,  x>=l 

and hence ¢ is well-defined and 

t, (F)l<-Ilfll. 
Now we observe that 

(1) 6 ( F + G ) = c k ( F ) + ¢ ( G ) ,  IFI^IGI=0; 

(2) ¢ ( F ) <  ¢ ( G ) ,  whenever F =  < G;  

(3) 6 ( -  F)  = - ¢ (F), F E ~,.  

Now suppose 0 < a < 1. If f E L (1, ~), 

~(I Tx (af t ) -  r~, (aft)l) <= (x - ax )P( l f l  I > x)  

=< (1 - a ) l l f l l .  
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Hence it follows easily that 

cb (aF) = lira 1 _ _  lim ~ (%x (af,)) 
~c~a log X . e ~  

= a¢  (F). 

We conclude that, using (3), 

(4) ¢ (aF) = a¢  (F), 

Now suppose F,G_->0 and let 
1,2 . . . .  , N - l a n d  n E N w e s e t  

Ak. = w E a :  h. (w)<=f . (w)<-~h. (w)  

For k = N w e s e t  

For each n E N, A1 . . . . .  , AN. partitions fl into E-measurable sets and 

k k ; 1 .  h. 1A~. _--- f. la~. --<N h,,1Ak., 

a E R ,  F E ~ I .  

H = F + G .  Fix N E N .  Then for k =  

Now using properties (1), (2) and (4) 

N - 1  N + I  
N ¢(H)--< ¢ ( F ) + ¢ ( G ) _ - < - - ~  - tb(H) 

so ¢ ( F ) +  ¢ ( G ) =  4~(H). It follows easily that ¢ is linear. 

By considering any f so that P(f_-> x ) =  x- '  for x _-> 1 we see that I1¢ II = 1. 
Note that there is an embedding J : L (1, o~)---> oy, given by Jff )  = (f, [ , . . .  ). Let 

1 
 o(f) = ¢ o S q )  = !ira 

which is a positive linear functional on L (1,~) with U~boll = 1 (compare [8]). 

LEMMA 2.2. Suppose 1 < p < ~ and 1/p + 1/q = 1. If  F E ~p and G E ~Jq 
then FG E ~1 and 

[ ¢ ( r G )  I_ -< ((~ (1 F [P))I/P ((~(] O [q))'/q. 

N - k  N - k + 1  
N h. 1A~. =< g. la~. = < N h. la~.. 
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PROOF. Simply note that 

so that FG E ~ and 
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[FGI~IF(+IG]  ~ 
P q 

< 1 4 , ( i F l P ) + l  4 , ( [ a l q )  4 , ( I F a l ) = p  

In particular if 4,(IFtp)= < 1, 4,(1G [q)_-< 1 then d~(tFG l) < 1 and the lemma 

follows by homogeneity. 

LEMMA 2.3. I[ 1 <=p <oo then F~(4,(IFIp)) TM is a semi-norm on ~Ip. 

PROOF. For p = 1 this is clear. For p > 1 note that 

4~([F + a IP)_--- ~b(lF I • I F +  a lp  ' )+  6(161" IF+ G[ p-') 

= ((6(IFIP)  I'p + 6 (1G Ip)I/P)6(IF + G ]P)'/q, 

where 1/p + 1/q = 1. The lemma follows. 

On % let 

III Fill =~([FIP) lip. 

Then t11" 111 is a lattice semi-norm on ~dp satisfying 

III F ÷ a III p = III f III p + III O III ", I FI ^ I a I = 0. 

Let M, = {F E %:111 F III p = 0}. Then with the quotient norm °-~d~/Mp is a 
normed lattice whose completion is an ALp-space (see Lacey [11] Chapter 5). We 

denote this space by ~p and denote by Kp the induced map Kp : ~p ~ ~p. 

We conclude this section with an elementary application of these ideas. We 
denote by Jp the natural mapJp : L(p, oo)~ % given by Jp(f) = ( / , / , . . . ) .  Note 
that 

I] g J J I I  = (tho(lflP)) TM 

where ~bo = ~bJ~ as above. 

We recall (cf. [7]) that for 1 _-< p < 2 there is an embedding of Lp into L(p, co) 

using a p-stable process. Precisely, there is a linear map Vp : Lp ~ L (p, oo) so that 

(i) Vpf and Vpg are independent whenever Il l  ^ I g l - - 0 .  
(ii) ~(exp(itvpf))= e x p ( - [ t  I p Ilfll3. 

THEOREM 2.5. The range of Vp is complemented in L (p, ~) for 1 <= p < 2. 



310 N . J .  K A L T O N  Is r .  J .  M a t h .  

P R O O F .  Note that for f ~ L ( p , ~ )  

¢o(tfl p)=lim 1 

= l im 1 fo ~ • ~l-~gx e(lfl~>t)dt 

= Jim x P ( J f l  ~ > x) 

whenever this limit exists. 

Now if Ilfll~ = 1, l im,_.xP([  V,f[ ~ > x)= C~ (see [17]) where 

Thus for f E Lp, 

c,,___ [L'sin": ,:,,,:1-" 
X p .J " 

¢o(I v~f I ~)~'~ = C~ II f I1~. 

Hence KflpVp (Lp) is an isometric copy of Lp contained in ~p. This implies that 

there is a projection of norm one of ~p onto KflpVp (Lp) (this result goes back to 

Pelczynski [16] for the case p > 1; see also Dor [3]). 

Now let W : KJpVp(Lp)---> Vp(Lp) be the inverse of Kflp. Then WeKflp is the 

required projection. 

REMARK. In the case p = 1, II wll-- 1 and so the projection has norm one. In 

fact if Ilfll-- 1 then 

P(lV, fl> x)=2tan -11- 
7r x 

so that 

and 

II v,f  II = sup 2 t 1 - -  x . an  -~ - 
x > 0  7/" X 

= lim 2 x tan ~1 1 
x ~ ®  ~ X 

2 
,r/" 

¢o(I v,  f l) = tl K,J~ v,  f l l  = 2rr -~ 

so that K1J1 is an isometry on VI(L~). 



Vol. 52, 1985 EMBEDDING INTO L0 311 

3. Applications 

The following proposition will be useful later on. Although we know of no 

explicit reference for it, we believe that it is already known and that it is due to 

Maurey. 

PROPOSITION 3.1. Suppose 1 < p < 2, and X is a Banach space so that lp (X)  

embeds into Lo. then X (and lp (X)) are of type p. 

PROOF. We shall regard lp (X) as a tensor product of Ip and X, and denote by 

(e~) the standard vector basis of lp. 

We may assume that we have a strong embedding V:lp(X)-->Lq where 

0 < q _--- 1. It follows that there are constants M < oo and e > 0 so that 

(1) II vu  IIq --< M]]u ][, u ~ lp(X), 
(2) [[ Vu. lv Ilq ~ M-'[[ u [1, u E lp (X), 

whenever P(F)>= 1 - e. 

We shall need two further facts. Suppose {e,} is a sequence of indepen- 

dent Bernoulli random variables on some probability space (fi ' ,E',  P ' )  where 

P'{e, = 1} = P'{e, =-1}=21-.  Then there is a constant 7 > 0  so that for 

f ,  . . . .  , f o E L q  

~ I1(~1~ 12)'% --< (~'(ll~,f, II~)) TM -<-I1(~ If~ 12)'%. 

This is a simple deduction from Khintchine's inequality (see [12] p. 50). 

Secondly we observe that L(p/2,¢~) is a p/2-normable; see [5] for a proof, 

although the result was known earlier [13]. Hence there is a constant Co so that 

for f , , . . . ,  f, E L (p, oo) 

= [ P \ lip 

To prove this simply note II lf, 1211 , ,  --< Cl(~ll 1~" 2 p/2.~jr/2 x2/p. Hence as the injection 

L (p, 00)---> Lq is continuous we have a constant Cx so that for f~ , . . . ,  f~ E L (p, oo), 

Combining these remarks we see that there is a constant C so that for 

f , , . . . , f o  e L(p ,~)  

Fix A = (2/e)l/qM/y. 
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Now let us suppose w, . . . .  , w, E X with II w, II = 1. Set 

[q = V(e, ® w,) 

f o r j = l , 2 , . . . a n d  l=<i=<n. 

We now select a sequence of disjoint sets Es E E by induction. 

For convenience let E o = O .  If Ek have been selected for k < j ,  we let 

F = E o U . . . U E j _ l .  Fo reach  3 > 0 a n d  1 < i  < n , l e t  

0, (3) = {to : If~,(to)l > A 3 - "  and to~ F}. 

Let G~(O)=Ofor  I ~ i ~ n .  

Let 

p(3) = max P(G,(8)).  
l<=i<n 

Pick 3s = sup{8 : p ( 3 ) =  > 3}. Since p is increasing p(3,)_- > 3s, and so there is a set 

E~ disjoint from F and k(j)  with 1 _-< k ( l ) _  -< n so that 
> A - l ip  Cot) (1) I/~o.,(to)l-- 3, , ~ E j .  

(2) If H E ~ is disjoint from E~ . . . .  , E~_, and if 1 -<-_- i _<- n is such that 

- - l / p  Ifq(to)l>=AP(H) , to ~ H ,  

then P(H)  <= P(Es). 
Note here that if 8j = 0, which is possible, then we are taking E s = O and (1) 

and (2) will still be satisfied (3; I/p= oo!). 

Note that E3j -<_ 1 so that for any N E N, 

and hence 

j=l q 

12 ) 1/2 q 
\ i=z..~l ~ ~/" [ fk(S),j M)  '-1. 

As (E3~/"lf~o,j ]:).2 __> A on E, U . . .  U EN we conclude 

P ( E , U . - .  U EN)_--< ( ~ A )  q < '  

Let E = U7=1K. Then P(E)<= ½e. 
Now fix j so that n3j <= ½s. For each j let 

G~ = {to : c0f~ E, IhKto)l = A~;""}. 
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n 

Then P(G,)<=Sj for i = 1,2 . . . . .  n. Let F = f ~ I ( E  U I.J~l G~). Then P(F) >>- 

1 - e  and by construction 

i = 1 , 2  . . . . .  n. [[1F "/~, [[p.~ < A, 

Now for any a ~ , . . . , a ,  

TM 
< M(~'(l lEe,a,V(ej  Q w,). 1F q))q-"q 

so that 

for any r / =  ~?j. 

Now 

I i=1 ei~ dP >= M - ~ n  q/p 

f ~g'(iTLe,f, [q)dP >_ M-qnq,p 

= u ( ~ ' ( l l ~ , ~ , .  1F II~)) TM 

<= C M  a~ p ~ . 1~ 

< - A C M  I~,1 p 
i = l  

By a well-known result of Kahane [4], this shows that X is of type p. 

LEMMA 3.2. Suppose 0 < q < p < 2 and 1 <-_ M < oo are given. Then there is a 

constant C = C ( p , q , M )  so that for any n U N and any linear operator 

V : (") le ---> Lq which satisfies 

M-111ull<llVUllq < Mllu II, u E ,(~' 

then if f~ = Ve, we have 

C- in  1,. <__ ]lmax I~ I I1~ -- C n " .  

PROOF. We suppose {e~}.=l and {r/i}7~ are two sequences of independent 

indentically distributed random variables on some probability space. We sup- 

pose each e~ is Bernoulli with P'{e, '-- + 1} = P'{e~ = -1}  = ½, while each ~7~ is 

r-stable where r is chosen so that p < r < 2. Thus 

'(e i,,) = e-I'l' 
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and by Khintchine's inequality 

I1(:~ I f, 1~)"211~ >-- M- '  n"~. 

Conversely 

~' ,7,[, d <=M~(~'(~I,7,()) ~'" 
i=1 

= c ~Mqn q/e 

where c, = II n, I~ < o~. 
Hence 

t" 
<= cq, Mqn q/e 

where c~ = 11,7, I1~ < oo. Thus 

i= l  ~ ClC2 IVln  . 

Hence 

Also 

Ilmaxl~ I IIq ~ c,c~'Mn ''p. 

( J/~It ) ~ If, l=_- < max If, ,,= If, l' 

so that by Holder's inequality 

]2~ 1/2) r 1/, ,n II oll( , ,,,) Ibo Ilmax"'lh) 

Thus 

o r  

M-'n "~ ~ (c,c~'Mn "P)"211maxlf, l ll'( "2. 

and the lemma is proved. 

LEMMA 3.3. Suppose 0 < q < p < 2 and 0 < M < oo. Then there is a constant  

3' = y ( p , q , M )  so that  whenever  V :  lp ~ L ( p , ~ )  is an embedding such that  
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II v~ IIP,o <= M II ~ II, 

II vu I1~ ~ M-'][ u II, 

then j:or any x >= 1, if Ve. = f.,  

EMBEDDING INTO L,, 

u ~lp, 

u ~ l ~ ,  

315 

However 

Hence 

Now 

f f~  q (q/e-l)~. gX*PdP < (flln )q*v + (fl2n )q/PP(g. > f l l n ) +  ~ P x r ( g .  > x )dx 

<= ½C-qn q/p + (fl2n)qIPP(gA > flln) + qnMPp f:~ xq/P-:dx 

<=(~C-~+ qMP/3~/"-') n ~'P + (/3~n)~'PP(g. >/3,n) p-q 
< ~C-qn q/P + (fl2n )q/PP(gA > flln ). 

fA g~/PdP ~ C-qn qlp. 

P(ga > flln) > 'r-qa-q/p ~ 51,.., b .~2  . 

Applying this to every n-set A we see that 

lim inf P(I£. I P > x) => 3,x-' 

PROOF. Since the inclusion L ( p , ~ ) ~ L q  is continuous there is a constant 

C = C(p, q, M) so that for any finite subset A of N of cardinality n 

C-~nl,, <= m2x 

Choose/31 < (1/3)P/qC -P and f12 so that 

~_q/p> 3q MPCq" 
p - q  

Let A C N be any finite subset of cardinality n and let g.  = maxi~. 1: [P. Then 

P(g* > x) <= ,~. e(I~ [P > x) 

< nMPx -1. 



316 N.J. KALTON Isr. J. Math. 

1 C_qfl~q/s p(If~ I s >~n)<~ 

at most n -  1 times and so 

P(Ifj [ p > fl,n ) >= 3~ C qfl;,/s lira inf 

for every n E N and the lemma follows for some suitable 3'- 

We can now state and prove the main theorem. 

THEOREM 3.4. Let X be any Banach space. Suppose 1 <= p < 2. The following 

conditions on X are equivalent: 

(i) X embeds into L s, 
(ii) I s (X) embeds into Lo, 
(iii) L~ (X) embeds into Lo, 

(iv) There is a tensor product lp ( ~  X which is of type p and embeds into Lo. 

REMARK. Note in the case p = 1 it is not necessary to suppose the tensor 

product is of type p in (iv). 

PROOF. (i) ~ (iii) If X embeds into Lp then so does Ls(X). 

(iii) => (ii) Immediate. 

(ii) ~ (iv) This follows from Proposition 3.1 if p > 1 and is obvious if p = 1. 

(iv) ~ (i) We may suppose by Nikishin's theorem that we have a linear 

operator V : Is Qo X---> L (p, oo) so that for some M < ~ and q < p we have 

II v~ IIs,o--< Mfl u II, 

II Vu IIq --> M-111 u II. 

Now define W : X---> ~s by 

Wg = (V(e. @ g))~:l. 

Then W is bounded. If [tg [[ = 1 and z E ls we have 

It V(z ® g)lls~ = < Mllz II, 

II v(z ® g)tI~ => M-'llz II. 

Hence by Lemma 3.3 there exists 3' > 0 so that 

lim inf (PI V(e, • g)l s > x) => 3'x-' 

for x => 1. 
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Let fn = V(en @ g) and F = (/n') E ~p. Then for x => 1, 

"mfo lim ~0"~ If, I p) = P(lfn I ~ > t)dt 
n E V "  

f/ _-> lim inf P(I[~ I' > t)dt 

m i n  _-_ ii f P(I[. I > t)dt 

_-> 3; + 3, log x. 

Hence 

and in general 

3, 

4 (I Wglg"" 3,' llgll. 
This means that KpW maps X isomorphically into an abstract Lp-space and 

the result follows. See the remarks following Lemma 2.3 where Kp is defined. 

EXAMPLES. lp (lq) (1 _--< p, q < 2) embeds into Lo if and only if p _-< q. 

4. Concluding remarks 

We first observe that the proofs of all the main results go through unchanged 

for quasi-Banach spaces. In particular we have: 

THEOREM 4.1. Let X be a quasi-Banach space. Then l~(X) embeds into Lo i[ 
and only i[ X embeds into L~ (and hence X is locally convex). 

The analogous results for embeddability into Lp for 0 < p < 1 also hold. 

An obvious question which arises is whether a quasi-Banach subspace of Lo of 

type p (0 < p < 2) necessarily embeds into L r For p = 2 this is the case, and is a 

simple consequence of a theorem of Kwapien [10] since every subspace of Lo has 

cotype 2. However  for p = 1 it is false; there is a non-locally convex subspace of 

Lo which is of type one. This is the Ribe space (see [6], [8]). The/ l -product  of this 

space cannot be embedded in Lo. For 0 < p < 1 or 1 < p < 2 the problem is open. 

A second question is whether Theorem 3.4 holds when p = 2, i.e. if 12(X) 
embeds into Lo is X a Hilbert space? The methods of Proposition 3.1 only show 

that X is of type p for every p < 2 in this case. 

We shall however settle the case p = 2 in the special case when X has local 

unconditional structure. The key is the following lemma. 
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LEMMA 4.1. Let (u,)  be an unconditional basic sequence in Lp where 0 < p < 

2. I f  0 < q < p there is an unconditional basic sequence ( vn ) in Lq and a constant C 

so that 

II p/q p/q 

PROOF. Let ~1, be any sequence of independent identically distributed 

2q/p-stable random variables on some probability space (IT, E', P ' )wi th  

~'(exp(it~/~)) -- exp(  - It ]2~,p). 

Consider g. (to, to') = ]un (to)]P/qT/. (to') in Lp (~1 × IT). 

It is easy to see that for some constant Co 

a,g. q N ,/~ i/q 

n = l  

and the result follows. 

REMARK. The above lemma implies that the q/p-concavifieation of an 

unconditional basic sequence in Lp embeds into Lq (we thank the referee for this 

remark). A similar result holds for Banach lattices embedding in Lp. 

We say a Banach space X has local unconditional structure if there is a 

constant K so that if E C X and d i m E  < ~  there is a finite-dimensional 

subspace F of X containing E with a K-unconditional basis. 

THEOREM 4.2. Let X be a Banach space with local unconditional structure. 

Suppose 12(X) embeds into Lo. Then X is a Hilben space. 

PROOF. First note that we can reduce this theorem in the case when X has an 

unconditional basis. Indeed for the general case one need only take any 

sequence F~ of finite-dimensional subspaces each with a K-unconditional basis 

and observe if Y = 12(F~) then Y has an unconditional basis and 12(Y) embeds 

into L0. 

Now suppose X has an unconditional basis (f~), and 12(X) embeds into L, 

where 0 < p < 2. Then since X has cotype 2, if E a.fn converges then E la.  12 < oo. 

Conversely, note that there is an unconditional basic sequence (u,..) in L~ so 

that E a,..u,., converges if and only if 

Fix any q < p and determine an unconditional basic sequence (vm~) in Lq by 
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Lemma 4.1. Then Y am.v.,, converges if and only if 

[am.]q'% <~.  
r a = l  

Let Y be [v~.] in Lq. Then Y has an unconditional basis (vl.) and 

C '  [[~] ]a. ]q/Pf. I"'~ I ~ ~.o,I ~ C[ ~ Ion ,"'Pf. I p/q. 

Hence Z a,..v,., converges if and only if 

m = l  amnl ) l ,  v ~ oo 

and if r = 2q/p, 1,(Y) embeds into Lq. Hence Y embeds into L, and is of type r. 
Thus if Ela. lZ< ~ then Ela. 12"v.1 converges and hence Ela. lf. converges. 

We conclude that (f.) is equivalent to the standard basis of 12. 
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